

Future Technology of Smart Mobility

Mr Allan Lai General Manager APAS R&D Centre

Copyright @ 2022 APAS All rights reserved

About APAS...

- Since 2006
- Established by ITC
- Hosted by HKPC

EV Popularisation in Green Way

Number of EV in Hong Kong

The wider or eventual full adoption of EVs will be a key element that drives Hong Kong towards the vision of "Zero Carbon Emissions • Clean Air • Smart City".

EV technology development suitable for Hong Kong local market

- Commercial vehicle application with pantograph HPC and swappable battery
- Hydrogen technology for automotive

Increased demand of charging

- Fast charging technology
- Off-grid application
- Adaption of clean, sustainable and renewable energy

Copyright @ 2022 APAS All rights reserved

Electric Vehicle Charging Technologies

	Plug-in	Pantograph	Wireless Charging	Swappable Bettery	
	Rama Bana Construction		OLEYbus Power track		
Charging Power	50 kW – 450 kW	150 kW – 450 kW	3.7 kW – 100 kW	N/A	
Standard	CHAdeMO / IEC-CCS / GB	IEC-CCS + OppCharge	SAE J2954 (up to 11 kW)	No Unified or International Standard	
Advantages	 Most common and mature technologies Relatively easy to install Support smart charging 	 Support different brands of vehicles (OppCharge) Fully automatic operation 	• Fully automatic operation	 Recharge electric vehicles in minutes 	
Disadvantages	Manual operation required	 Installation is more complicated than plug-in chargers, the height of the column device is up to 4-5 metres high 	 Temporarily supported up to 11 kW (SAE J2954) Energy efficiency is slightly lower than contact type The online charging while driving requires the wireless charging coil to be hidden under the road surface of the entire road section 	 There is no unified or international standard for the time being Require a lot of space to install the mechanical equipment of the replacement centre 	

Pantograph High Power Charging Solution for Electric Commercial Vehicles

- The-first-of-its-kind designed, developed and assembled in HK
- Support international CCS OppCharge standard
- Fulfil busy turnaround cycles required by commercial fleet
- Provide shuttle bus trial service for HKSTP in 2021

Swappable Battery Pure Electric Vehicle

- 7m pure electric vehicle for busy operation
- 7 minutes to swap the battery
- Low-floor design for safe and easy boarding
- Real-time passenger and vehicle running data feedback to fleet operation centre
- Include both minibus and delivery truck version models

Co-developed with:

Copyright @ 2022 APAS All rights reserved

Electric Refrigerated Truck with Al-air & Li-ion Battery

- Al-air battery system for automotive application
- Quick loading system for replacement of Aluminum cathode
- Power control system for Al-air battery system
- Two electric refrigerated trucks with Al-air powered refrigerators

5-ton electric truck with Al-air powered refrigerator

8-ton electric truck with Al-air powered refrigerator

Ever Crown Technology Development Limited

Copyright @ 2022 APAS All rights reserved

Solar Energy Powered EV Charging Station

ITT-019-18AP Public Sector Trial: Research and Development of a Smart Vehicle-to-Home (V2H) System for Electric Vehicles

The Police Driving and Traffic Training Centre, Fanling

Key Figures

- 14.4kW Solar power output
- 104 sqm of 40 solar panels
- Medium Charge Support (7kW)
- 24x7 basis service
- Expandable 39kWh battery

LED x 8pcs

- Utilise only green energy
- Off-grid operation
- Scalable system for higher power
- Easy application with existing infrastructure

Copyright @ 2022 APAS All rights reserved

Solar Energy Powered EV Charging Station

Rooftop Solar Panels Layout

Solar panels (total 40 pcs) are installed onto the rooftop by structural adhesives

Simple instalment method

- Clean the rooftop by high pressure water jet cleaner
- Secure the solar panel firmly onto the rooftop by structural adhesives
- Reserve 75cm space for the path of installation & maintenance

Solar Energy Powered EV Charging Station

Potential Off-grid Application

Charging service in suburban area with easy installation with existing infrastructure

Clear Water Bay Second Beach Carpark

Hydrogen Fuel Cell Powered Charger

Application with Zero-Carbon Energy

ITP-072-18AP Development of PEM fuel cell technology platform for EV mobile charging system

Project Features

- 35MPa system
- PEM Fuel Cell Engine

Green Hydrogen enables carbon-free new charging infrastructure

Retired EV Battery Mobile Charger

Application with recycled resources

Retired EV batteries hold 70% to 80% of electricity storage capacity

Project Features

- Mixture of different type of battery around 30kWh
- Off-grid portable operation
- Various power out including IEC charging socket

Mobile EV Charging Service	
Mobile Power Source	
Emergency Power Source	

Benefits

- Repurpose retired EV batteries
- Extend life cycle of EV batteries
- Moderate carbon emission for EV ecosystem

EV Development Stages

1st Generation

- Built from shared platform
- Development focus on conversion of powertrain and battery
- Twin-models for EV and ICE

2nd Generation

- Dedicated platform for EV application
- Integration of advanced e-drive technologies
 - (Integrated powertrain, new battery material, highly efficient power modules)
- Engineered for autonomous driving

3rd Generation

- Developed for futuristic hydrogen energy
- Compatible with full autonomous driving
- V2X and IoT technologies onboard

Opportunities and Challenges in NEV

Technologies in Hydrogen Powered Vehicle

Automotive Fuel Cell Technology

Hydrogen Tank

Higher pressure of 70MPa become popular with lower material cost and process.

Battery

Adaptive battery selection for scalable Fuel Cell system to satisfy demands of power and efficiency performance.

E-drivetrain

 H_2

Beneficial from BEV development to adopt latest technology with integrated powertrain and higher voltage platform.

Fuel Cell Engine

- Increase durability of Fuel Cell during load changing and start-stop condition
 Shorten initial time
- Optimise response to load request

Innovation in Hydrogen Carriers

18

- Hydrogen has the highest energy per mass of any fuel
- However, its low ambient temperature density results in a low energy per unit volume
- Therefore, it requires the development of advanced storage methods that have potential for higher energy density

Material-based Hydrogen On-board Storage Technology

Prospective HICEV

2007 "World's first production-ready hydrogen vehicle"

- Same 6L gasoline engine with modification
- Bi-fuel: Gasoline & Liquid hydrogen

Limited dispensing network supporting liquid hydrogen hurdled widespread of the product

- Zero CO₂ emission with Green Hydrogen
- Similar capital expenditure as diesel ICE system
- Better payload with same size as ICE today
- Lower level of hydrogen purity

Common difficulties in hydrogen storage

Aftertreatment technology to eliminate significant NOx

Area where BEV/FCEV is hesitantly applicable:

- Heavy-duty vehicles with high power demand and harsh conditions
- Off-road segments

APAS Approach on Hydrogen

- Building up know-how of Hydrogen Fuel Cell EV integration
- Deployment of Hydrogen Fuel Cell on vehicle with forward-

looking manner on latest technology trend

Exploring HICEV's potential where BEV or HFCEV are not

applicable

"Zero Vehicular Emission" is promised by EV popularisation

"Zero Carbon Emission" will be realised with following steps taken:

- Wider adoption of green energy resource in EV charging
- Proactive introduction of solutions with minimal carbon footprint
- Taking focus on efficiency during utilisation

An Industry Study on EV Adoption in HK

Bottleneck & recommendations

Infrastructure support for ePCs

Innovative charging tech

eCommercial vehicles – RHD & incentives

Talent development for EV industry

Higher power charging facilities

Decommissioning EV batteries Support for R&D and testing

An Industry Study on **Electric Vehicle Adoption** in Hong Kong APAS hkpc

22 Copyright @ 2022 APAS All rights reserved

EV Roadmap for HK

- APAS advised ePLBs suitable for most green minibus routes in HK
- APAS assisted EPD in selecting 301 possible sites for eTaxi charging and will implement trials in Sai Kung & Lantau regions
- APAS developed 2nd life EV battery prototypes for EMSD & HKAA
- Dedicated trials on 2 units of eCoach to HKIA & HK Anti-Cancer Society + eCV for solid waste handling

Public Light Bus \$80 million trial for e-public light buses to be commenced in 2023

Taxi 됾

Explore with operators for suitable operational mode and EV models for trial

Green Technologies

Cover second life applications of EV batteries in the priority themes under the Green Tech Fund

Dedicated Trials

Promoting trials for electric public transport and commercial vehicles proactively, with a view to setting a more concrete way forward and timetable around 2025

Green Tech Fund \$200 million Green Tech Fund to fund R&D of green technologies, including EV projects

APAS Insights for eCommercial Vehicles

- Low business justification for specific tailor-making for the small market in HK
- High power charging (e.g. Pantograph) needs cross-department support (LandsD/BD/HyD/District office/Power companies)
- eCVs restrained by battery capacity vs. payload & driving range e.g. HK cross-border trucks
- Fair feedback from local franchised bus companies
- Proprietary charging standards for eCVs

Driving force

- New Energy Transport Fund/Green Tech Fund
- Incentive for commercial fleet
- APAS & ITC fund to assist localisation & R&D e.g. ePLB/eCV
- ITC Public Sector Trial Scheme

Copyright @ 2022 APAS All rights reserved

APAS Development on Charging Facilities

CLP由中電

- Development of 13A to Superfast Quick Chargers
- Load management with OCPP capability
- Vehicle-to-Home (V2H)
- EPD The EV-charging at Home Subsidy Scheme
- Super Fast Charging / Pantograph
- Consultancy service for EPD on identification of possible Quick Charger site locations in 18 Districts
- Feasibility study for EPD on ePLB and associated fast charging facilities

Autonomous Vehicle Active Safety Control System Based on Roadside LiDAR and V2X Communication

Global Options

Background Colo Frame Rate Size (m) Point size in meters velodyne 48; 48; 48

Lidar **Current stage** C-V2X Communication Lidar (((~)))

Roadside LiDAR with bird's-eye view perception for active safety control

Copyright @ 2022 APAS All rights reserved

Red Light Violation Prediction System using Image Processing

- Roadside traffic safety monitoring and warning system
- Prediction for red light violation
- Purely image processing
- Low-cost and easy to set up

Red Light Violation Prediction System using Image Processing

Red Light Violation Prediction System using Image Processing

> 96%

True Alarm rate on Vehicle RLV

- Left turn red light violation
- Right turn red light violation
- Straight pass red light violation

≤1%

False Alarm Rate

False alarm

Achievement

Can provide reaction time (∆T ~1sec) to subject vehicle & other road users near the intersection

High-efficiency Multi-layered Axial Flux Motor Control System

Problems:

As key part of EVs, conventional motor (radial flux) hit the bottleneck during extensive development.

Efficiency is reduced by 20%~30% during low-speed high load or high-speed low load
 2) Larger volume and higher weight

E

High-efficiency Multi-layered Axial Flux Motor Control System

Proposed Solutions:

Develop a 100kW high performance multi-layered axial flux motor (MLAFM) control system.

- MLAFM with shorter flux path, no coil overhang, no iron core and multi-layered configuration
- SiC-based multi-channel drivers and main control module are integrated into one compact unit
- Control each layer separately to achieve high dynamic performance and efficiency, under different working conditions (acceleration, steady speed, deceleration)

All layers provide power when accelerating Some layers hibernate when running at steady speed

Some layers turned into generators when decelerating

All layers turned into generators when stopped

THANK YOU

Copyright @ 2022 APAS All rights reserved

Timeline of Technology Readiness

			20	20	2030		20	40	2050
		Light	BEV		Tethnology ready for mass market application	Cont	tinuous imp ormance ar	provement on safety, nd cost	
-		Vehicle	HFCEV		FCEV	·			
			BEV						
		Buses	HFCEV			A	Alternative Technologies		
6	00'	Heavy	BEV						
-		Vehicle	HFCEV						

EV Development Stages

BEV

Hydrogen

Phasing out in private cars segment under proactive regulations

Still have potential as transitional solution for commercial cars

HFCEV

Rapid technology innovations in key systems (battery, E-drive system) to improve safety, performance and economy

Widely spread charging network and upcoming ultrafast charging enable a convenient use of E-Vehicle

NEV = New Energy Veh.

PHEV = Plug-in Hybrid Electric Veh.

BEV = Battery Electric Veh.

HFCEV = Hydrogen Fuel Cell Electric Veh.

PHEV

Technology is commercially applicable

Prospective future with supportive infrastructure network